
LDD-series laser diode driver

User manual

Warning! This equipment may be dangerous. Please read user manual before starting operations.

Important note. Please measure output with adequate load only (diodes). Resistive load connected to the output won't destroy the driver, but will severe distort its behaviour.

Overview / Applications

LDD-series laser diode driver is intended for single laser diode driving as well as for laser diode arrays driving.

Input voltage, max. output power, max. output current, max. output voltage are selectable in the widest range (for further information see **Selection Chart** section).

Module may be used for medical applications.

Cooling

Module is cooled with embedded fan. No external cooling is required.

Appearance

MAINS: Molex 39-30-1060

6	5	4
3	2	1

PIN (color)	DESCRIPTION	
1, 4	Pins 1 and 4 are connected	
2, 5	Not used	
3, 6	Pins 3 and 6 are connected	

OUTPUT (TO LASER DIODE): M6 studs

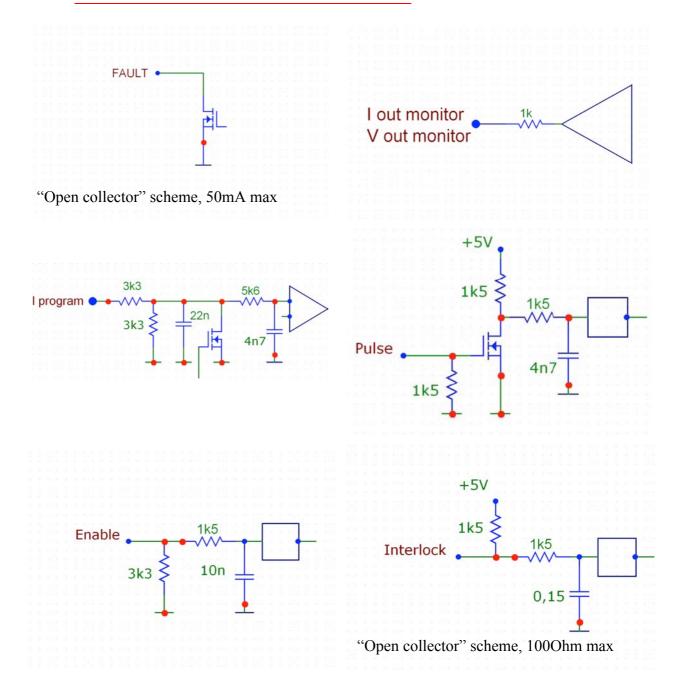
PIN (color)	DESCRIPTION	
LED "+" (red)	To laser diode anode	
()	To laser diode cathode	

GROUND: M5 stud

Module should be grounded using this stud. It should be done before connecting module to the mains.

Grounding policy

By default both OUTPUT negative and INTERFACE return are internally connected to the chassis' ground. If diode's body and anode are interconnected this might result in potential troubles.


Modifications with floating output are available on request.

INTERFACE (LDD-series CONTROL): 15 Pin "D"-Sub Female

PIN (color)	DESIGNATION	DESCRIPTION	
1 (green)	Enable	Apply +5V DC on this pin to enable work of LDD.	
		While 0V are applied to this pin or pin is unconnected module is disabled.	
		Once <i>Fault</i> has occurred module is blocked till you eliminate fault cause, then disable module and enable it again.	
2 (orange)	Fault *	If module is <i>enabled</i> and some trouble has occurred, module automatically stops operations and sets <i>Fault</i> status (<i>Fault</i> loop is "closed").	
		In case of normal operations <i>Fault</i> loop is "opened".	
		Maximal allowed current in <i>Fault</i> loop is 50mA.	
3 (trasparent)	Interlock	When <i>Interlock</i> loop is "opened" output is inhibited. You should "close" this loop to start operations (electrical resistance of "closed" loop should be below 100 Ohm level).	
		Once <i>Interlock</i> has occurred module is blocked till you "close" <i>Interlock</i> loop, then disable module and enable it again.	
4, 9, 15 (black)	Interface Return	Return of all interface circuits.	
4, 7, 13 (black)	Interface Return	This pin is connected to the GROUND stud.	
	V OUT monitor	The voltage at this pin is a monitor signal proportional to the measured value of voltage on load.	
5 (yellow)		0V at PIN5 corresponds to 0V at load.	
,		Voltage at <i>PIN5</i> corresponds either to voltage at load $(V_{MAX} < 10V)$ or to $\frac{1}{2}$, $\frac{1}{4}$ etc of this voltage $(V_{MAX} < 20V, 40V$ etc).	
6 (purple)	I OUT monitor	The voltage at this pin is a monitor signal proportional to the measured value of output current.	
		0V at <i>PIN6</i> corresponds to 0A.	
		10V at PIN6 corresponds to I _{MAX.}	
7 (blue)	Inregree	Voltage applied to this pin sets output current.	
7 (blue)	I program	0-10V DC are linear with 0-I _{MAX} .	
8 (white) Pulse		Apply +5V DC on this pin to enable work of LDD.	
	Pulse	While 0V are applied to this pin or pin is unconnected module is disabled.	
10-12	_	Not used	

^{*} see also Faults section

INTERFACE CIRCUITS:

Warning! This equipment produces high voltages that can be very dangerous. Don't be careless around this equipment.

- During operation the protective covers of the equipment must be securely in place and all electrical connections must be properly attached
- Module is designed to be installed inside a properly grounded metal. It is the customer's responsibility to ensure that personnel and users are prevented from accidentally contacting the LDD.

Casual contact could be fatal!

- Disconnect the module from the power source before making or changing electrical or mechanical connections.
- **Don't remove protective covers!** There are no user serviceable parts inside this equipment.

Operations

- 1. Connect LDD to the ground (*GROUND* stud).
- 2. Connect laser diode to the module (*LED* "-" and *LED* "+" studs)
- 3. Disable module, set Pulse off, set I Program signal to 0V
- 4. Feed power to the module
- 5. Set desired value of output current (*I Program* signal)
- 6. *Enable* module
- 7. Use *Pulse* signal to On/Off output current

To power down LDD

- 1. Set *Pulse* to 0V, then *Disable* module
- 2. Remove power from the module

Module sets *Fault* state in the following cases:

• *overheating* (temperature of the module exceeds 70+/–2 °C level).

To remove Fault status module must be cooled below 65+/-1 °C temperature.

• overvoltage (voltage on the load exceeds 110% of V_{MAX} level).

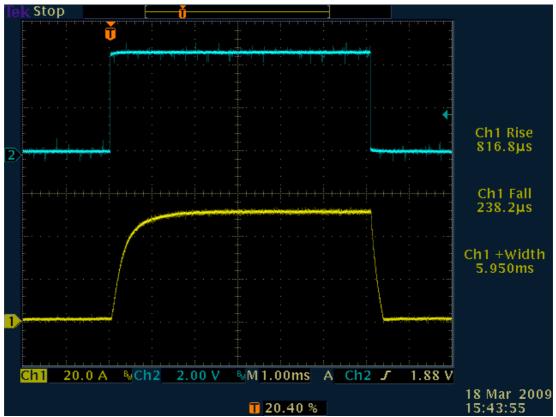
Most popular causes of such fault are load type mismatch and load absence.

- *overcurrent* (output current exceeds 1.05 I_{MAX} level)
- *incorrect I Program* (input voltage exceeds 10.5V level)
- *incorrect start-up sequence* (if the *Enable* signal is set before connecting module to the mains, module sets the *Fault* state)

Once *Fault* has occurred you should eliminate Fault cause, then "reboot" module (*DISABLE* module and *ENABLE* it again).

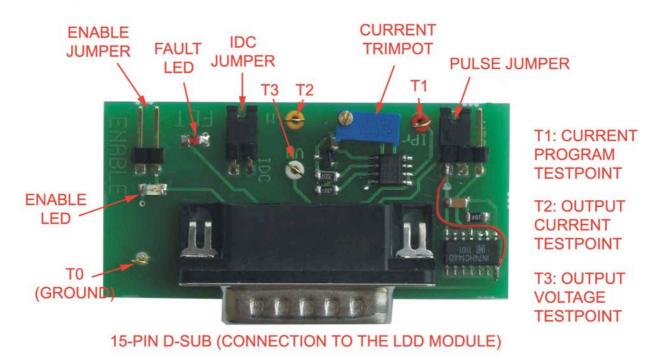
ELECTRICAL SPECIFICATION

INPUT		
Voltage	90-254 VAC, 50/60 Hz	
Max. current	3 (8) A	
OUTPUT		
Max. output power	Selectable in 150-1500 W range (see	
Max. output current $(I_{MAX})^{*/}$	Selection Chart section) Selectable in 5A-100A range (see Selection Chart section)	
Max. output voltage $(V_{MAX})^{*/}$	Selection Chart section) Selectable in 2V-100V range (see Selection Chart section)	
*/ Lux x Vux shoul	dn't exceed maximal output power selected	
Recommended/allowed diode voltage	Recommended 70% to 100% of V_{MAX} Allowed 20% to 100% of V_{MAX}	
Output current adjustment range	0% - 100% of I_{MAX} with recommended diodes (70% to 100% of V_{MAX}) 10% to 100% of I_{MAX} with allowed diodes (20% to 100% of V_{MAX})	
Efficiency	more than 80%	
Rise/fall time	< 1 ms (10% to 90% full current) < 500 us on request	
Current regulation accuracy	< 1% of I _{MAX}	
Current value error	< 1% of I _{MAX}	
Current overshoot	$< 1\%$ of I_{MAX}	
INTERFACE		
Connector	15 Pin "D"-Sub Female	
Current program	analog, 0-10 V	
Current monitor	analog, 0-10 V	
Voltage monitor	analog, see Interface description	
SAFETY		
PFC value	> 0.98 (active)	
Leakage current	< 150 μΑ	
Input/output isolation voltage	4000 VAC	
Safety approval	IEC60950, IEC60601-1	
EMC approval	EN55011 (Class A)	
COOLING	No external cooling is required	


ENVIRONMENT	
Operation temperature	0 +40 °C
Storage temperature	-20 +60 °C
Humidity	90%, non-condensing

Part number

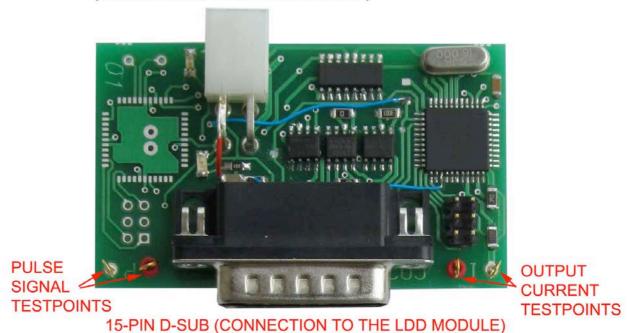
Typical order code is <u>LDD-XXXX-YYY-ZZZ</u> where XXXX – max. output power (in Watts), YYY – max. output current (in Amps). ZZZ – max. output voltage (in Volts) YYY and ZZZ product shouldn't exceed XXXX...


Examples: LDD-250W-100A-2V or LDD-1500W-50A-30V

Typical output

Yellow curve depicts output current, cyan curve depicts inverted *PULSE* signal Timescale is 1 ms/div

Stand-alone PCB (ordering code –STA) makes stand-alone operations possible. Nothing but this PCB is needed.


PULSE JUMPER STATES DESCRIPTION

I OLSE JUMI ER STATES DESCRITTION			
	Pulse is ON		
or • •	Pulse is OFF		
	Pulse is driven by external generator		
	Pulse is driven by internal generator		

Dimensions: 64x30x17mm

RS-232 interface PCB (ordering code –RS232) provides possibility to control the laser diode driver via machine RS-232 interface.

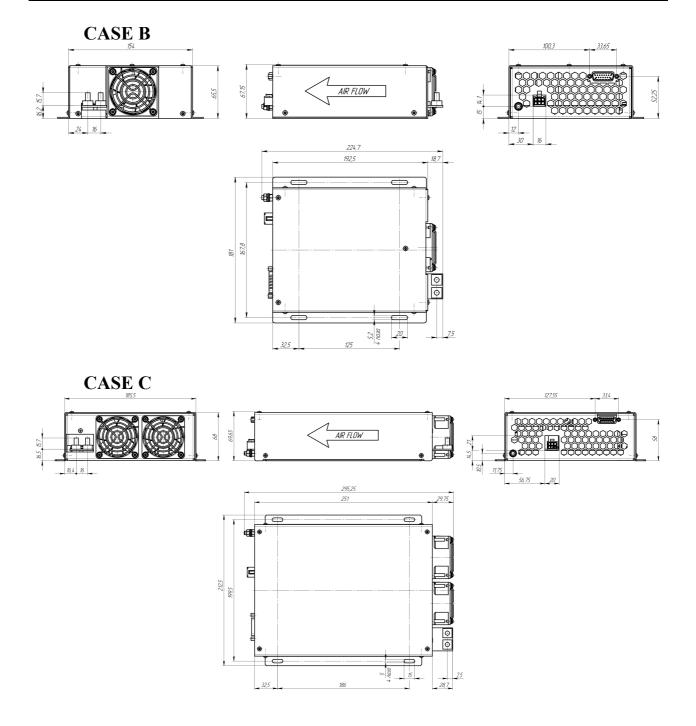
4-PIN MOLEX MINIFIT (CONNECTION TO THE COMPUTER)

Dimensions: 64x38x17mm

RS-232 connection parameters: 115200 bps, 8 data bits, 1 stop bit, no parity.

Command format is: {command} {data (optionally)} {end-of-line} command is 1 character long (see list below), data is ASCII-string of adjusting value. each command ends with end-of-line symbols (\r\n or \n)

List of available commands:


- c/C set/get current (A)
- u/U set/get continuous/pulsed mode ("1" CW; "0" pulsed)
- p/P set/get pulse width (ms)
- f/F set/get repetition rate (Hz)
- r/R set/get start ("1" start, "0" stop)
- o makes certain quantity of pulses and stops
- ? acquire all set parameters
- Y- current monitor
- V voltage monitor
- Z fault state monitor ("1" means fault)
- M all monitors
- e echo off/on

Example:

• u 1 \n c 50 \n r 1

LDD-series selection chart

Name	Max.power	Max.current	Input voltage	Case
		(I_{MAX})		
LDD-150	150 W	5 – 75 A	110/230 VAC	В
LDD-250	250 W	10 – 100 A	110/230 VAC	В
LDD-400	400 W	10 – 100 A	230 VAC	В
LDD-600	600 W	10 – 100 A	110/230 VAC	С
LDD-1000	1000 W	10 – 100 A	110/230 VAC	С
LDD-1500	1500 W	10 – 100 A	230 VAC	С

